Immunolocalization of the high-mobility group N2 protein and acetylated histone H3K14 in early developing parthenogenetic bovine embryos derived from oocytes of high and low developmental competence.


This study investigated differences in the distribution of acetylated histone H3 at Lysine 14 (H3K14ac) and the High-Mobility Group N2 (HMGN2) protein in the chromatin of early- (before 24 hr) and late-cleaved (after 24 hr) bovine embryos derived from small- (1-2 mm) and large-follicles (4-8 mm). The presence of HMGN2 and H3K14ac has been associated with different nuclear functions including chromatin condensation, transcription, DNA replication and repair. In vitro matured oocytes were parthenogenetically activated (PA) and cultured in synthetic oviduct fluid medium. Early- and late-cleaved embryos were fixed at 36, 50, 60, 70 and 80 hr after PA to detect the presence of H3K14ac and HMGN2. The rates of nuclear maturation (81.1% vs. 58.7%), early cleavage (46.9% vs. 38.9%), and development to blastocyst stage (34.3% vs. 18.9%) were higher (P < 0.05) in oocytes derived from large- compared to small follicles. The proportion of positively stained nuclei at 50 and 60 hr after PA was higher for both H3K14ac (27.2% vs. 4.8% and 64.3% vs. 30%) and HMGN2 (47% vs. 21.3% and 60.6% vs. 46%) in early versus late cleaved embryos derived from small- versus large-follicles, respectively. However, the rate of positive nuclei in early-cleaved embryos from small-versus large-follicles was similar for HMGN2 (87% vs. 93%) but lower for H3K14ac (51% vs. 64.4%) at 80 hr after PA. These data suggest that less developmentally competent embryos derived from small follicles had an altered chromatin remodeling process at the early stages of development compared to those derived from large follicles that are more competent to support development to blastocyst stage.


    0 Figures and Tables

      Download Full PDF Version (Non-Commercial Use)